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ABSTRACT 
Performance is an important issue with any application, especially 
grid applications. Efficient execution of applications requires 
insight into how the system features impact the performance of the 
applications. This insight generally results from significant 
experimental analysis and possibly the development of 
performance models. This paper present the Prophesy system, for 
which the novel component is the model development. In 
particular, this paper discusses the use of our coupling parameter 
(i.e., a metric that attempts to quantify the interaction between 
kernels that compose an application) to develop application 
models. We discuss how this modeling technique can be used in 
the analysis of grid applications. 

General Terms 
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1. Introduction 
Currently, distributed systems, especially grid systems, are 
becoming available through programs such as the TeraGrid [TG], 
the NASA Information Power Grid [JG99], the Alliance [AL], the 
National Partnership for Advanced Computational Infrastructure 
[NP], GriPhyN [GP], and the Europen Grid Effort [EG]. Grids, in 
contrast to conventional parallel systems, have some unique 
features that pose significant challenges in terms of performance 
modeling and analysis. These unique features include: 

• The resources are heterogeneous. 

• The resources at the geographically different sites have 
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different clocks. 

• The number of resources is assumed to be a significant 
number. 

• Many of the resources are shared (e.g., the WANs used 
to interconnect the resources), resulting in dynamic 
loads. 

Performance is an important issue with any application, especially 
grid applications. Efficient execution of applications requires 
insight into how the system features impact the performance of the 
applications. This insight generally results from significant 
experimental analysis and possibly the development of 
performance models. This paper presents Prophesy, a web-based 
performance analysis and modeling infrastructure for parallel and 
grid applications. Prophesy includes an extensive database that 
archives the details about the context in which the performance 
data was collected as well as the performance data itself. In terms 
of the clocks, the Prophesy instrumentation tool collects aggregate 
information about sections of an application code; hence log files 
involving timestamps are not used. Further, performance 
information is collected per processor and automatically sent to 
the database for archiving at the end of execution of an 
application. The archival of the performance data is independent 
of the application execution, so as not to hinder or impede the 
execution. 

The novel aspect about Prophesy is the automated modeling 
component that includes conventional as well as a new techniques 
for developing performance models. This paper focuses on this 
modeling component, detailing how the techniques support grid 
applications. In particular, the paper discusses the use of our 
coupling parameter, a metric that attempts to quantify the 
interaction between kernels that compose an application. The 
metric is used to identify how to combine the performance models 
of the kernels that compose an application into a model of the 
application. We discuss how this technique can be used with grid 
applications. Our future work is focused on how to incorporate 
the dynamic load information into the performance models to get 
better predictions. 

The remainder of this paper is organized as follows. Section 2 
presents the background information about Prophesy followed by 
a detailed presentation of the modeling component in Section 3. 
Related work is given in Section 4, followed by the paper 
summary in Section 5. 

13 



2. Prophesy Framework 
The Prophesy framework consists of three major components: 
data collection, data analysis, and three central databases, as 
illustrated in Figure 1. The data collection component focuses on 
the automatic instrumentation of codes at the level of basic 
blocks, procedures, or loops. The default mode consists of 
instrumenting the entire code at the level of loops and procedures. 
A user can specify that the code be instrumented at different levels 
of granularity or manually insert directives for the instrumenting 
tool to instrument specific segments of code. The resultant 
performance data is automatically placed in the performance 
database. This data is used by the data analysis component to 
produce an analytical performance model at the level of 
granularity specified by the user, or answer queries about the best 
implementation of a given function. The models are developed 
based upon performance data from the performance database, 
model templates from the template database, and system 
characteristics from the systems database. These models can be 
used to predict the performance of the application under different 
system configurations. The Prophesy interface uses web 
technology to enable users from anywhere to access the 
performance data, add performance data, or utilize the automated 
instrumentation and modeling processes. 

DATA DATABASES DATA 
COLLECTION ANALYSIS 

Figure 1. Prophesy  framework.  

2.1 Data Collections 
PAIDE (Prophesy Automatic Instrumentation and Data Entry), 
shown in Figure 2, is the data collection component of the 
Prophesy system; the goal of  PAIDE is to minimize 
instrumentation overhead [WT01b]. PAIDE includes a parser 
that identifies where to insert instrumentation code. PAIDE also 
generates two files: (1) the call graph of the application and (2) 
the locations in the code where instrumentation was inserted. The 
information in these two files allow the performance data to be 
directly related to the application code for code tuning. For each 

execution of an application, PAIDE records the time of day and 
the IP address of node 0 of the grid system used to execute the 
application; this infi3rmation forms a unique identifier to allow 
data from different files to be associated with the same execution. 

[ Source code ] 
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Figure 2. PAIDE framework.  
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2.2 Prophesy Database 
Prophesy assumes that applications can be decomposed into 
modules, which can be further decomposed into functions that can 
be decomposed into basic units in a hierarchical manner as 
depicted in Figure 3. In particular, we assume the following 
meaning about each component: 

* Application: refers to the complete large-scale application. 

• Modules: refer to the various files that comprise the 
application; it is assumed that the application designer uses 
some modularity in the application design. 

• Functions: refer to the different function routines that may 
be contained in a given module. Users will be asked to 
associate a "pure function" name with their given function 
where appropriate. For example, a user may identify their 
function "genffF' as the pure function FFT. Pure functions 
are widely used functions such as conjugate gradient or 
Gaussian elimination. Pure functions facilitate the best 
implementation queries. 

• Basic  Units: refer to a code segment that may be of  finer 
granularity than a function but coarser granularity than a 
basic block. For example, a segment of nested loops would 
be considered one basic unit. 

The Prophesy database shown in Figure 4 also has a hierarchical 
organization, consistent with the hierarchical structure of the 
applications. The schema given below includes all three databases 
given in Figure 1: performance database, system models database 
and template database. The entities in the database are organized 
into four areas: application information, 
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Figure 3. Hierarchical structure of  an application 

executable information, run information and performance 
statistics, as described below: 

• Application Information: includes one entity that gives the 
application name, version number, a short description, and 
owner information and password (such that only the owner 
can modify or add data for a given application). Data is 
placed into this entity when a new application is being 
developed. 

• Executable Information: includes all of the entities related 
to generating an executable of an application. These entities 
include details about compilers, libraries (compile time and 
run time) and the control flow. Data is placed into these 
entities when a new executable is being used. 

• Run Information: includes all of the entities related to 
running an executable, which includes the system 
information and inputs used for execution. This system may 
be a single processor, single parallel machine or grid 
system. Data is placed into these entities for each run of a 
given executable. Further, detailed information about 
different systems (e.g., processor performance, node memory 
subsystem, operating system, etc.) is contained in this area. 

• Performance Statistics Information: includes all of the 
entities related to the raw performance data collected during 
execution. Performance statistics are collected for all levels 
of the application hierarchy. 

2.3  A u t o m a t e d  M o d e l i n g  
Prophesy's automated modeling component allows models to be 
developed easily and stores relevant modeling information in the 
database for later use. This latter feature results in a modeling 
process that improves over time. Currently, Prophesy's framework 
supports the following modeling techniques: curve fitting, 
parameterization, and kernel coupling methods. The first two 
methods are well-established techniques, for which Prophesy 
facilitates the methods via automation. The last method, kernel 
coupling, is enabled by Prophesy because of the significant 
amount of archival data and the automation of the modeling 
process. In this work, a kernel is a unit of computation that 
denotes a logical entity within the larger context of an 

I N 
alto q !!i 

Performance 

Figure 4. PROPHESY Database Schema 

application. The unit may be a loop, procedure, or file depending 
on the level of granularity of detail that is desired from the 
measurements. This method is to use kernel models to develop 
full application models. In this section we describe, briefly, what 
is done for curve fitting and parameterization; the coupling 
method is described in Section 4, as this method relates to grid 
applications. 

t t 0  

2.3.1 Curve Fit t ing 
Curve Fitting is a method that uses optimization techniques, e.g., 
least squares, to develop a model. For this method, Prophesy uses 
the empirical data found in the database. The empirical data to be 
used for the fit is determined by the user. Then GNU Octave 
lOCI is used to generate the resultant model. The advantage of 
this method is the ease for which the analytical model is 
generated; the disadvantage is the lack of exposure of system 
terms versus application terms. The models resulting from curve 
fitting are generally a function of some input parameters of the 
application; the system performance (e.g., operation execution 
time or communication performance) is lumped into the 
coefficients determined by curve fitting. Hence, models resulting 
from curve fitting can be used to explore application scalability 
but not different system configurations. 

2.3.2 Parameterization Me thod  
Parameterization is a method that combines manual analysis of the 
code with system performance measurements. The manual 
analysis entails hand-counting the number of different operations 
in the code. It is assumed that this type of analysis is done on 
kernels or functions that are generally in the range of 100 lines of 
code or less. With Prophesy, the manual analysis is used to 
produce an analytical equation with terms grouped together such 
that the equation is a function of some input variables. For 
example, given a matrix-vector multiply kernel, the complexity is 
quadratic in terms of the matrix rank. The manual analysis would 
entail grouping the terms to produce something such as ctiN 2 + 
ct2N + ct3, whereby cq, cz2 and c~3 have explicit terms representing 
the application and the system and N, the matrix rank. These 
terms are represented in the Prophesy database as scripts that can 
be used to generate the values based upon data in the database. 
Having the system and application terms represented explicitly, 
one can use the resultant models to explore what happens under 
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different system configurations as well as application sizes. The 
disadvantage of this method is the time required for manual 
analysis. However, given that the focus is on functions or kernels 
for manual analysis, the time requirement is feasible. Further, the 
manual analysis is done only once per function or kernel code. 
Lastly, we believe that the set of kernels will remain relatively 
small as indicated by previous work identifying the large number 
of applications affected by research in a fixed number of areas. 

3. Kernel Coupling 
Kernel coupling refers to the effect that kernel i has on kernelj  in 
relation to running each kernel in isolation. The two kernels can 
correspond to adjacent kernels in the control flow of the 
application or a chain of three or more kernels. In our previous 
work we used coupling to identify parts of the application that 
required performance improvement [GT99]. The coupling value 
provided insight into where further algorithm and code 
implementation work was needed to improve performance, in 
particular the reuse of data between kernels. Current work is 
focused on demonstrating how the coupling values of adjacent 
pairs and chains of kernels can be used to develop analytical 
models for one code [TW01, TW02]. In this section, we first 
describe how coupling values are generated and then demonstrate 
how it is used to develop models of applications. We also provide 
data illustrating that coupling values can be reused. 

3.1 Coupling Parameter 
The kernel coupling parameter, C~j, quantifies the interaction 
between adjacent kernels in an application. To compute the 
parameter Cij, three measurements must be taken: 

• Pi is the performance of kernel i alone, 

• Pj is the performance ofkernel j  alone, and 

• Pij is the performance of kernels i and j (assuming kernel i 
immediately precedes kernel j )  in the application. 

These measurements are done in the sequence determined by the 
application. In particular, a measurement is obtained by placing a 
given kernel or pair of kernels into a loop, such that the loop 
dominates the execution time. Then the time required for the 
application, beyond the given kernel or pair of kernels, is 
subtracted such that the resultant time reflects that of only the 
given kernel or pair of kernels. 

We define that, the value Cij is equal to the ratio of the measured 
performance of  the pair of kernels to the expected performance 
resulting from combining the isolated performance of each kernel. 
Since Cij is the measurement of interaction between kernels, we 
compute it as the ratio of the actual performance of  the kernels 
together to that of no interaction as given below: 

e,j (i) 
C#=-- 

e,+ej 

Now, let's consider Equation I for the case of an ordered chain of 
kernels. Let W be the set of all kernels in the ordered chain of k 
kernels.. Assume that Cw is the coupling value of the chain, and 
Pw is the performance of the chain. Then, the above equation is 
modified into 

Pw (2) c.  = Z p  ' 
i~w 

Notice that interactions between all pairs or chains of kernels are 
not necessary. The value Cw from Equation 2 represents the direct 
interaction between two adjacent or chain of kernels in an 
application (i.e.:, in the sense of the control flow of the 
application). We group the kernel couplings into three sets: 

* C w  = 1: indicates no interaction between the kernels, 
yielding no change in performance. 

• Cw < 1: results from some resource(s) being shared between 
the kernels, producing a performance gain (i.e., constructive 
coupling). 

• Cw > 1: occurs when the kernels interfere with each other, 
resulting in a performance loss (i.e., destructive coupling). 

3.2 Application Modeling 
Assume that an application has four kernels (A, B, C, D) that are 
executed together in one loop. Let EA, EB, Ec and ED represent 
the analytical models of each of the respective kernels; these 
models include the number of times the kernel is executed in the 
application. The equation for the estimated application execution 
time is given as follows: 

T = ctE A + 13EB +"tEc + BED 

Using the pair-wise performance coupling values as given in 
Equation 1, the coefficients have the following values, 
corresponding to the weighted average of the coupling values 
containing each kernel: 

cc = [(CAB * PAB) + (CDA * PDA)]/ (PAB + PDA) 
= [(CAB * PAB) + (CI~c * PBC)]/(PAB + PsC) 

Y = [(CBc * PBC) +(CcD * PCD)]/(PBc +PcD) 
= [(Cca * Pea) + (CDA * PVA)]/(PcD + PaA) 

The above is denoted as the pair-wise kernel coupling predictor. 
We could also use three-kernel coupling values for which we 
would use the coupling values, such as CAaC and the performance 
PAne- 

In [TW02], we demonstrated the advantages of using the coupling 
values to estimate performance using the Nas Parallel Benchmarks 
[BH95]. For BT (Block Tfidiagonal) dataset A, the four kernel 
predictor had an average relative error of 0.79%, while merely 
summing the times of the individual kernels resulting in an 
average relative errof of 21.80%. For the SP dataset A, the four 
kernel predictor had an average relative error of 14.16%, while 
the summation methodology had an average relative errof of 
35.43%. 

One of the issues related to the coupling predictor was how many 
experiments are needed to get good coupling values. In 
particular, does one need coupling values for each dataset, each 
system, and different number of processors. Our work in this area 
has demonstrated that similar systems, such as distributed memory 
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versus shared memory, have very similar coupling values. 
Further, with different number of processors, the coupling values 
have very few distinct changes. In particular, significant changes 
occur when the is a distinct change in the memory footprint of the 
application as it scales. 

3.3 Relationship to Grid Applications 
As discussed previously, grid applications have some unique 
charactefistcs as the execution environment consists of resources 
at geographically different sites. Prophesy can be used to model 
grid applications by using a combination of the paramterization 
method with the coupling method. This can be done in the 
following manner. First we start off with an application 
decomposed into a finite set of kernels (e.g., FFT, matrix-matrix 
multiply, solver, etc.) ; it is assumed that this number is small. 
Second, we use the parameterization modeling technique to 
develop performance models of the kernels for each of the 
different systems used in the execution environment. In 
particular, the parameterized technique would untilize the 
different timings for compute and system operations stored in the 
system database. Further, the parameterized technique would also 
utilize the timings about the interconnection between systems as 
well. Then, for each system, we develope a model that utilizes the 
coupling values for the given system type as well as the 
granularity of the dataset size. In particular, the coupling values 
would identify how to combine the kernel models for each system. 
The resultant models would provide insight into the overall 
system performance as well as the individual system performance. 
Currently, we are applying this technique to a grid cosmological 
application. 

4. RELATED WORK 
There exist some approaches to organizing performance data by 
using database techniques. For example, Snodgrass [SN88] has 
developed a relational approach to monitoring complex systems 
by storing the information processed by a monitor into a historical 
database. The basic idea is to use historical databases to formalize 
dynamic information. The SIEVE (Spreadsheet based Interactive 
Event Visualization Environment) system [SG93] maintains 
dependence graph information in a static data base and tracefile 
information in a dynamic data base. Users may select columns 
from spreadsheet and associate those with graphical objects for 
display. The PDS (Performance Database Server) system [HB94] 
was specifically designed with a simple tabular format that 
involves displaying the data in rows (machine configuration) and 
columns (numbers). It logically organizes data according to the 
benchmarks themselves. Further, it only provides reference 
performance of a benchmark on various machines. 

Significant work has been done with developing performance 
tools such as Pablo IRA93], AIMS [YS95], or Paradyn [MC95]., 
and performance analysis environments, in particular PACE 
[KH96] and POEMS [PO98].. These environments focus on 
performance predication in contrast to Prophesy for which the 
focus is on archival of data and model development. 

5. Summary 
Grid applications are emerging as applications are focusing on 
very complex and large-scale problems. Performance of this class 

of applications is important, for which the underlying systems 
present some unique characteristics. In this paper, we presented 
Prophesy, a framework for analyzing and modeling the 
performance of parallel and grid applications. The novel aspect 
about Prophesy is the automated modeling component, which 
includes a method for developing models as composition of the 
performance models of the kernels that compose the application. 
The combination of using the coupling parameters with 
parameterized models that are system dependent, allows one to 
better understand what is going on within each system as well as 
across systems. 
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